4 research outputs found

    Radio resource management for V2X in cellular systems

    Get PDF
    The thesis focuses on the provision of cellular vehicle-to-everything (V2X) communications, which have attracted great interest for 5G due to the potential of improving traffic safety and enabling new services related to intelligent transportation systems. These types of services have strict requirements on reliability, access availability, and end-to-end (E2E) latency. V2X requires advanced network management techniques that must be developed based on the characteristics of the networks and traffic requirements. The integration of the Sidelink (SL), which enables the direct communication between vehicles (i.e., vehicle-to-vehicle (V2V)) without passing through the base station into cellular networks is a promising solution for enhancing the performance of V2X in cellular systems. In this thesis, we addressed some of the challenges arising from the integration of V2V communication in cellular systems and validated the potential of this technology by providing appropriate resource management solutions. Our main contributions have been in the context of radio access network slicing, mode selection, and radio resource allocation mechanisms. With regard to the first research direction that focuses on the RAN slicing management, a novel strategy based on offline Q-learning and softmax decision-making has been proposed as an enhanced solution to determine the adequate split of resources between a slice for eMBB communications and a slice for V2X. Then, starting from the outcome of the off-line Q-learning algorithm, a low-complexity heuristic strategy has been proposed to achieve further improvements in the use of resources. The proposed solution has been compared against proportional and fixed reference schemes. The extensive performance assessment have revealed the ability of the proposed algorithms to improve network performance compared to the reference schemes, especially in terms of resource utilization, throughput, latency and outage probability. Regarding the second research direction that focuses on the mode selection, two different mode selection solutions referred to as MSSB and MS-RBRS strategies have been proposed for V2V communication over a cellular network. The MSSB strategy decides when it is appropriate to use one or the other mode, i.e. sidelink or cellular, for the involved vehicles, taking into account the quality of the links between V2V users, the available resources, and the network traffic load situation. Moreover, the MS-RBRS strategy not only selects the appropriate mode of operation but also decides efficiently the amount of resources needed by V2V links in each mode and allows reusing RBs between different SL users while guaranteeing the minimum signal to interference requirements. The conducted simulations have revealed that the MS-RBRS and MSSB strategies are beneficial in terms of throughput, radio resource utilization, outage probability and latency under different offered loads comparing to the reference scheme. Last, we have focused on the resource allocation problem including jointly mode selection and radio resource scheduling. For the mode selection, a novel mode selection has been presented to decide when it is appropriate to select sidelink mode and use a distributed approach for radio resource allocation or cellular mode and use a centralized radio resource allocation. It takes into account three aspects: the quality of the links between V2V users, the available resources, and the latency. As for the radio resource allocation, the proposed approach includes a distributed radio resource allocation for sidelink mode and a centralized radio resource allocation for cellular mode. The proposed strategy supports dynamic assignments by allowing transmission over mini-slots. A simulation-based analysis has shown that the proposed strategies improved the network performance in terms of latency of V2V services, packet success rate and resource utilization under different network loads.La tesis se centra en la provisi贸n de comunicaciones para veh铆culos sistemas celulares (V2X: Vehicle to Everything), que han atra铆do un gran inter茅s en el contexto de 5G debido a su potencial de mejorar la seguridad del tr谩fico y habilitar nuevos servicios relacionados con los sistemas inteligentes de transporte. Estos tipos de servicios tienen requisitos estrictos en t茅rminos fiabilidad, disponibilidad de acceso y latencia de extremo a extremo (E2E). Para ello, V2X requiere t茅cnicas avanzadas de gesti贸n de red que deben desarrollarse en funci贸n de las caracter铆sticas de las redes y los requisitos de tr谩fico. La integraci贸n del Sidelink (SL), que permite la comunicaci贸n directa entre veh铆culos (es decir, veh铆culo a veh铆culo (V2V)) sin pasar por la estaci贸n base de las redes celulares, es una soluci贸n prometedora para mejorar el rendimiento de V2X en el sistema celular. En esta tesis, abordamos algunos de los desaf铆os derivados de la integraci贸n de la comunicaci贸n V2V en los sistemas celulares y validamos el potencial de esta tecnolog铆a al proporcionar soluciones de gesti贸n de recursos adecuadas. Nuestras principales contribuciones han sido en el contexto del denominado "slicing" de redes de acceso radio, la selecci贸n de modo y los mecanismos de asignaci贸n de recursos radio. Respecto a la primera direcci贸n de investigaci贸n que se centra en la gesti贸n del RAN slicing, se ha propuesto una estrategia novedosa basada en Q-learning y toma de decisiones softmax como una soluci贸n para determinar la divisi贸n adecuada de recursos entre un slice para comunicaciones eMBB y un slice para V2X. Luego, a partir del resultado del algoritmo de Q-learning, se ha propuesto una estrategia heur铆stica de baja complejidad para lograr mejoras adicionales en el uso de los recursos. La soluci贸n propuesta se ha comparado con esquemas de referencia proporcionales y fijos. La evaluaci贸n ha revelado la capacidad de los algoritmos propuestos para mejorar el rendimiento de la red en comparaci贸n con los esquemas de referencia, especialmente en t茅rminos de utilizaci贸n de recursos, rendimiento, y latencia . Con respecto a la segunda direcci贸n de investigaci贸n que se centra en la selecci贸n de modo, se han propuesto dos soluciones de diferentes llamadas estrategias MSSB y MS-RBRS para la comunicaci贸n V2V a trav茅s de una red celular. La estrategia MSSB decide cu谩ndo es apropiado usar el modo SL o el modo celular, para los veh铆culos involucrados, teniendo en cuenta la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la situaci贸n de carga de tr谩fico de la red. Adem谩s, la estrategia MS-RBRS no solo selecciona el modo de operaci贸n apropiado, sino que tambi茅n decide eficientemente la cantidad de recursos que los enlaces V2V necesitan en cada modo, y permite que los RB se reutilicen entre diferentes usuarios de SL al tiempo que garantiza requisitos m铆nimos de se帽al a interferencia. Se ha presentado un an谩lisis basado en simulaci贸n para evaluar el desempe帽o de las estrategias propuestas. Finalmente, nos hemos centrado en el problema conjunto de la selecci贸n de modo y la asignaci贸n de recursos de radio. Para la selecci贸n de modo, se ha presentado una nueva estrategia para decidir cu谩ndo es apropiado seleccionar el modo SL y usar un enfoque distribuido para la asignaci贸n de recursos de radio o el modo celular y usar la asignaci贸n de recursos de radio centralizada. Tiene en cuenta tres aspectos: la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la latencia. En t茅rminos de asignaci贸n de recursos de radio, el enfoque propuesto incluye una asignaci贸n de recursos de radio distribuida para el modo SL y una asignaci贸n de recursos de radio centralizada para el modo celular. La estrategia propuesta admite asignaciones din谩micas al permitir la transmisi贸n a trav茅s de mini-slots. Los resultados muestran las mejoras en t茅rminos de latencia, tasa de recepci贸n y la utilizaci贸n de recursos bajo diferentes cargas de red.Postprint (published version

    Radio resource management for V2X in cellular systems

    No full text
    The thesis focuses on the provision of cellular vehicle-to-everything (V2X) communications, which have attracted great interest for 5G due to the potential of improving traffic safety and enabling new services related to intelligent transportation systems. These types of services have strict requirements on reliability, access availability, and end-to-end (E2E) latency. V2X requires advanced network management techniques that must be developed based on the characteristics of the networks and traffic requirements. The integration of the Sidelink (SL), which enables the direct communication between vehicles (i.e., vehicle-to-vehicle (V2V)) without passing through the base station into cellular networks is a promising solution for enhancing the performance of V2X in cellular systems. In this thesis, we addressed some of the challenges arising from the integration of V2V communication in cellular systems and validated the potential of this technology by providing appropriate resource management solutions. Our main contributions have been in the context of radio access network slicing, mode selection, and radio resource allocation mechanisms. With regard to the first research direction that focuses on the RAN slicing management, a novel strategy based on offline Q-learning and softmax decision-making has been proposed as an enhanced solution to determine the adequate split of resources between a slice for eMBB communications and a slice for V2X. Then, starting from the outcome of the off-line Q-learning algorithm, a low-complexity heuristic strategy has been proposed to achieve further improvements in the use of resources. The proposed solution has been compared against proportional and fixed reference schemes. The extensive performance assessment have revealed the ability of the proposed algorithms to improve network performance compared to the reference schemes, especially in terms of resource utilization, throughput, latency and outage probability. Regarding the second research direction that focuses on the mode selection, two different mode selection solutions referred to as MSSB and MS-RBRS strategies have been proposed for V2V communication over a cellular network. The MSSB strategy decides when it is appropriate to use one or the other mode, i.e. sidelink or cellular, for the involved vehicles, taking into account the quality of the links between V2V users, the available resources, and the network traffic load situation. Moreover, the MS-RBRS strategy not only selects the appropriate mode of operation but also decides efficiently the amount of resources needed by V2V links in each mode and allows reusing RBs between different SL users while guaranteeing the minimum signal to interference requirements. The conducted simulations have revealed that the MS-RBRS and MSSB strategies are beneficial in terms of throughput, radio resource utilization, outage probability and latency under different offered loads comparing to the reference scheme. Last, we have focused on the resource allocation problem including jointly mode selection and radio resource scheduling. For the mode selection, a novel mode selection has been presented to decide when it is appropriate to select sidelink mode and use a distributed approach for radio resource allocation or cellular mode and use a centralized radio resource allocation. It takes into account three aspects: the quality of the links between V2V users, the available resources, and the latency. As for the radio resource allocation, the proposed approach includes a distributed radio resource allocation for sidelink mode and a centralized radio resource allocation for cellular mode. The proposed strategy supports dynamic assignments by allowing transmission over mini-slots. A simulation-based analysis has shown that the proposed strategies improved the network performance in terms of latency of V2V services, packet success rate and resource utilization under different network loads.La tesis se centra en la provisi贸n de comunicaciones para veh铆culos sistemas celulares (V2X: Vehicle to Everything), que han atra铆do un gran inter茅s en el contexto de 5G debido a su potencial de mejorar la seguridad del tr谩fico y habilitar nuevos servicios relacionados con los sistemas inteligentes de transporte. Estos tipos de servicios tienen requisitos estrictos en t茅rminos fiabilidad, disponibilidad de acceso y latencia de extremo a extremo (E2E). Para ello, V2X requiere t茅cnicas avanzadas de gesti贸n de red que deben desarrollarse en funci贸n de las caracter铆sticas de las redes y los requisitos de tr谩fico. La integraci贸n del Sidelink (SL), que permite la comunicaci贸n directa entre veh铆culos (es decir, veh铆culo a veh铆culo (V2V)) sin pasar por la estaci贸n base de las redes celulares, es una soluci贸n prometedora para mejorar el rendimiento de V2X en el sistema celular. En esta tesis, abordamos algunos de los desaf铆os derivados de la integraci贸n de la comunicaci贸n V2V en los sistemas celulares y validamos el potencial de esta tecnolog铆a al proporcionar soluciones de gesti贸n de recursos adecuadas. Nuestras principales contribuciones han sido en el contexto del denominado "slicing" de redes de acceso radio, la selecci贸n de modo y los mecanismos de asignaci贸n de recursos radio. Respecto a la primera direcci贸n de investigaci贸n que se centra en la gesti贸n del RAN slicing, se ha propuesto una estrategia novedosa basada en Q-learning y toma de decisiones softmax como una soluci贸n para determinar la divisi贸n adecuada de recursos entre un slice para comunicaciones eMBB y un slice para V2X. Luego, a partir del resultado del algoritmo de Q-learning, se ha propuesto una estrategia heur铆stica de baja complejidad para lograr mejoras adicionales en el uso de los recursos. La soluci贸n propuesta se ha comparado con esquemas de referencia proporcionales y fijos. La evaluaci贸n ha revelado la capacidad de los algoritmos propuestos para mejorar el rendimiento de la red en comparaci贸n con los esquemas de referencia, especialmente en t茅rminos de utilizaci贸n de recursos, rendimiento, y latencia . Con respecto a la segunda direcci贸n de investigaci贸n que se centra en la selecci贸n de modo, se han propuesto dos soluciones de diferentes llamadas estrategias MSSB y MS-RBRS para la comunicaci贸n V2V a trav茅s de una red celular. La estrategia MSSB decide cu谩ndo es apropiado usar el modo SL o el modo celular, para los veh铆culos involucrados, teniendo en cuenta la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la situaci贸n de carga de tr谩fico de la red. Adem谩s, la estrategia MS-RBRS no solo selecciona el modo de operaci贸n apropiado, sino que tambi茅n decide eficientemente la cantidad de recursos que los enlaces V2V necesitan en cada modo, y permite que los RB se reutilicen entre diferentes usuarios de SL al tiempo que garantiza requisitos m铆nimos de se帽al a interferencia. Se ha presentado un an谩lisis basado en simulaci贸n para evaluar el desempe帽o de las estrategias propuestas. Finalmente, nos hemos centrado en el problema conjunto de la selecci贸n de modo y la asignaci贸n de recursos de radio. Para la selecci贸n de modo, se ha presentado una nueva estrategia para decidir cu谩ndo es apropiado seleccionar el modo SL y usar un enfoque distribuido para la asignaci贸n de recursos de radio o el modo celular y usar la asignaci贸n de recursos de radio centralizada. Tiene en cuenta tres aspectos: la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la latencia. En t茅rminos de asignaci贸n de recursos de radio, el enfoque propuesto incluye una asignaci贸n de recursos de radio distribuida para el modo SL y una asignaci贸n de recursos de radio centralizada para el modo celular. La estrategia propuesta admite asignaciones din谩micas al permitir la transmisi贸n a trav茅s de mini-slots. Los resultados muestran las mejoras en t茅rminos de latencia, tasa de recepci贸n y la utilizaci贸n de recursos bajo diferentes cargas de red

    An efficient mode selection for improving resource utilization in sidelink V2X cellular networks

    No full text
    Sidelink (SL) communication underlying cellular networks is a new paradigm that has been proposed to enhance the performance of cellular networks and support vehicle-to-everything (V2X) communications that enable vehicles to collaborate with other vehicles, devices, and infrastructures. In this way, vehicle-to-vehicle (V2V) communications can be performed using two communication modes, namely cellular communication based on uplink/downlink and direct V2V communications using sidelink. By properly selecting the operating mode according to the requirements of V2X services, significant operational benefits and efficient utilization of the spectrum can be achieved. In this paper, we propose a mode selection algorithm to avoid overload in the sidelink resources. A simulation-based analysis is presented to assess the performance of the proposed solution.Peer Reviewe

    An efficient mode selection for improving resource utilization in sidelink V2X cellular networks

    No full text
    Sidelink (SL) communication underlying cellular networks is a new paradigm that has been proposed to enhance the performance of cellular networks and support vehicle-to-everything (V2X) communications that enable vehicles to collaborate with other vehicles, devices, and infrastructures. In this way, vehicle-to-vehicle (V2V) communications can be performed using two communication modes, namely cellular communication based on uplink/downlink and direct V2V communications using sidelink. By properly selecting the operating mode according to the requirements of V2X services, significant operational benefits and efficient utilization of the spectrum can be achieved. In this paper, we propose a mode selection algorithm to avoid overload in the sidelink resources. A simulation-based analysis is presented to assess the performance of the proposed solution.Peer ReviewedPostprint (published version
    corecore